首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31335篇
  免费   4203篇
  国内免费   3434篇
电工技术   2086篇
技术理论   5篇
综合类   5178篇
化学工业   2019篇
金属工艺   1883篇
机械仪表   1862篇
建筑科学   2360篇
矿业工程   365篇
能源动力   306篇
轻工业   732篇
水利工程   260篇
石油天然气   363篇
武器工业   335篇
无线电   4564篇
一般工业技术   4645篇
冶金工业   549篇
原子能技术   171篇
自动化技术   11289篇
  2024年   61篇
  2023年   416篇
  2022年   703篇
  2021年   925篇
  2020年   987篇
  2019年   982篇
  2018年   874篇
  2017年   1180篇
  2016年   1221篇
  2015年   1480篇
  2014年   2137篇
  2013年   2313篇
  2012年   2455篇
  2011年   2502篇
  2010年   2093篇
  2009年   2219篇
  2008年   2063篇
  2007年   2380篇
  2006年   1953篇
  2005年   1677篇
  2004年   1387篇
  2003年   1127篇
  2002年   918篇
  2001年   854篇
  2000年   661篇
  1999年   543篇
  1998年   456篇
  1997年   386篇
  1996年   338篇
  1995年   346篇
  1994年   274篇
  1993年   231篇
  1992年   179篇
  1991年   140篇
  1990年   122篇
  1989年   90篇
  1988年   67篇
  1987年   45篇
  1986年   27篇
  1985年   26篇
  1984年   21篇
  1983年   25篇
  1982年   13篇
  1981年   14篇
  1980年   6篇
  1979年   6篇
  1978年   6篇
  1977年   9篇
  1976年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
61.
In this study the effects of high temperature and moisture on the impact damage resistance and mechanical strength of Nextel 610/alumina silicate ceramic matrix composites were experimentally evaluated. Composite laminates were exposed to either a 1050°C isothermal furnace-based environment for 30 consecutive days at 6 h a day, or 95% relative humidity environment for 13 consecutive days at 67°C. Low velocity impact, tensile and short beam strength tests were performed on both ambient and environmentally conditioned laminates and damage was characterized using a combination of non-destructive and destructive techniques. High temperature and humidity environmental exposure adversely affected the impact resistance of the composite laminates. For all the environments, planar internal damage area was greater than the back side dent area, which in turn was greater than the impactor side dent area. Evidence of environmental embrittlement through a stiffer tensile response was noted for the high temperature exposed laminates while the short beam strength tests showed greater propensity for interlaminar shear failure in the moisture exposed laminates. Destructive evaluations exposed larger, more pronounced delaminations in the environmentally conditioned laminates in comparison to the ambient ones. External damage metrics of the impactor side dent depth and area directly influenced the post-impact tensile strength of the laminates while no such trend between internal damage area and residual strength could be ascertained.  相似文献   
62.
Excessive cross-linking is a major factor in the resistance to the remodelling of the extracellular matrix (ECM) during fibrotic progression. The role of TGFβ signalling in impairing ECM remodelling has been demonstrated in various fibrotic models. We hypothesised that increased ECM cross-linking by TGFβ contributes to skin fibrosis in Systemic Sclerosis (SSc). Proteomics was used to identify cross-linking enzymes in the ECM of primary human dermal fibroblasts, and to compare their levels following treatment with TGFβ-1. A significant upregulation and enrichment of lysyl-oxidase-like 1, 2 and 4 and transglutaminase 2 were found. Western blotting confirmed the upregulation of lysyl hydroxylase 2 in the ECM. Increased transglutaminase activity in TGFβ-1 treated ECM was revealed from a cell-based assay. We employed a mass spectrometry-based method to identify alterations in the ECM cross-linking pattern caused by TGFβ-1. Cross-linking sites were identified in collagens I and V, fibrinogen and fibronectin. One cross-linking site in fibrinogen alpha was found only in TGFβ-treated samples. In conclusion, we have mapped novel cross-links between ECM proteins and demonstrated that activation of TGFβ signalling in cultured dermal fibroblasts upregulates multiple cross-linking enzymes in the ECM.  相似文献   
63.
To advance organ-on-a-chip development and other areas befitting from physiologically-relevant biomembranes,a microfluidic platform is presented for synthesis of biomembranes during gelation and investigation into their role as extracellular matrix supports.In this work,high-throughput studies of collagen,chitosan,and collagen-chitosan hybrid biomembranes were carried out to characterize and compare key properties as a function of the applied hydrodynamic conditions during gelation.Specifically,depending on the biopolymer material used,varying flow conditions during biomembrane gelation caused width,uniformity,and swelling ratio to be differently affected and controllable.Finally,cell viability studies of seeded fibroblasts were conducted,thus showing the potential for biological applications.  相似文献   
64.
With the rapid development of Internet, it is increasingly convenient to obtain real-time traffic condition information, which has greatly stimulated the improvement of urban traffic guidance. Traffic conditions are generally divided into four grades in the existing network platform, which are expressed in different colours. The understanding of traffic condition is still at the level of abstract senses. Therefore, it is difficult to grasp the characteristics of urban traffic. To this end, a new idea is proposed in this paper, and the new idea is to study the urban traffic characteristics based on real-time traffic condition information extraction with image identification technology. With this method, we can not only quantify the abstract traffic condition information, but also solve the loss of traffic condition information. In addition, an instance is analysed in this paper, it shows that it can provide references for urban traffic organization management very well.  相似文献   
65.
This article focuses on the consensus problem of leader-following fractional-order multi-agent systems (MASs) with general linear and Lipschitz nonlinear dynamics. First, the distributed adaptive protocols for linear and nonlinear fractional-order MASs are constructed, respectively. We allow the control coupling gains to be time varying for each agent. Moreover, the adaptive modification schemes for the control gain are designed, which renders smaller control gains and thus requires smaller amplitude on the control input without sacrificing consensus convergence. Second, based on fractional-order Lyapunov stability theorem and Barbalat's lemma, two novel sufficient conditions in terms of linear matrix inequalities are provided to ensure that the leader-following consensus can be obtained in the case for any undirected connected communication graph. Furthermore, we show that the proposed algorithm also works for consensus of agents with intrinsic Lipschitz nonlinear dynamics. As a result, the proposed framework requires no global information and thus can be implemented in a fully distributed manner. Finally, the numerical simulations are given to demonstrate the effectiveness of obtained the theoretical results.  相似文献   
66.
《Ceramics International》2020,46(3):2624-2629
TaC/SiC composites with 5 wt% SiC addition were densified by plasma-activated sintering (PAS) at 1500–1800 °C for 5 min under 30 MPa. The effects of plasma-activated sintering on microstructures, densification and mechanical properties of the composites were investigated. The results showed that TaC/SiC composites achieved a relative density more than 99% of the theoretical density at 1600 °C. A low eutectic liquid phase generated by the oxide on the particle surface was observed in the composite to realize a relatively low temperature sintering densification. While the TaC particle size decreased insignificantly with increasing sintering temperature, the transformation of morphology of SiC particles changing from equiaxed to elongated grain was activated, accompanying with a slight particle size decreasing of the SiC phase, thus promoting a relatively high flexural strength of 550 MPa under 1800 °C. Besides, some ultra-fine 2 nm Ta2Si was observed in the glassy pockets, strengthening the amorphous phase and thus increasing the flexural strength.  相似文献   
67.
Crack initiation and propagation in three braided SiC/SiC composite tubes with different braiding angles are investigated by in situ tensile tests with synchrotron micro-computed tomography. Crack networks are precisely detected after an image subtraction procedure based on Digital Volume Correlation. FFT based simulations are performed on the full-resolution 3D images to assess elastic stress/strain fields. Quantitative measurements of the crack geometries are performed using a novel method based on grey levels. The results show that braiding angle has no obvious effect on the location of crack onsets (initiation always occurs at tow interfaces), whereas it significantly affects the paths of crack propagation. This work provides an explicit demonstration of the crack propagation scenarios with respect to the mesoscopic fibre architectures.  相似文献   
68.
The boron nitride (BN) interphase of silicon nitride (Si3N4) fiber-reinforced BN matrix (Si3N4f/BN) composites was prepared by chemical vapor deposition (CVD) of liquid borazine, and the microstructure, growth kinetics and crystallinity of the BN coating were examined. The effects of coating thickness on the mechanical strength and fiber/matrix interfacial bonding strength of the composites were then investigated. The CVD BN coating plays a key role in weakening the interfacial bonding condition that improves the mechanical properties of the composites. The layering structure of the BN coating promotes crack propagation within the coating, which leads to a variety of toughening mechanisms including crack deflection, fiber bridging and fiber pull out. Single-fiber push-out experiments were performed to quantify the fiber/matrix bonding strength with different coating thicknesses. The physical bonding strength due to thermal mismatch was discussed.  相似文献   
69.
The main aim of this work is dual computer analysis of probabilistic coefficients for the homogenized tensor of the polymer filled with the rubber particles having randomized Poisson ratios of both constituents. The major issue is to verify an influence of a randomness in rubber Poisson ratio close to the compressibility limit on the uncertainty of the effective tensor probabilistic characteristics. Probabilistic analysis presented here is carried out using mainly the stochastic perturbation technique provided by the common application of the traditional FEM commercial code ABAQUS and the symbolic computations package MAPLE. This FEM-based technique employs polynomial response function of the optimum order recovered from the weighted least squares method and following a set of deterministic solutions obtained for various values of the randomized input parameter. Optimization procedure is released entirely into a symbolic environment, where maximization of the correlation factor together with minimization of the fitting variance and approximation error are applied. Homogenization technique consists in equating of deformation energies for the real composite and the artificial one characterized by the effective elasticity tensor with uncertainty.  相似文献   
70.
The effect of hexamethylene disilazane modified nanosilica on the dynamic mechanical analysis (DMA), crystallization, melting and thermal degradation behavior of linear low density polyethylene/ethylene vinyl acetate copolymer (LLDPE/EVA) blends are explored.Detailed DMA analysis is carried out in order to investigate the reinforcing behavior of nanosilica adopting Kerner–Nielson model. Oxidative degradation and thermal stabilities of samples are also studied by the thermogravimetery analysis. The high content of nanosilica particles results in significant shift of degradation temperature to higher temperatures in the oxygen atmosphere. This behavior might be attributed to the barrier properties of nanoparticles against oxygen and gaseous degradation products. However, incorporation of modified nanosilica into LLDPE/EVA blend is decreased the onset of degradation temperature of the unfilled system. In nitrogen atmosphere, no changes are observed in the thermal degradation range and only a reduction is documented in the onset of degradation temperature. Considering important role of onset of degradation temperature, activation energy of starting of degradation temperature is calculated utilizing Kissinger-Ozawa model in both oxygen and nitrogen atmospheres. Results showed that activation energy of degradation reaction is decreased by ∼ 20 kJ/mol. This decrease is owing to the release of modifiers from the nanoparticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号